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How do black holes grow to become
super-massive?

Feeding BHs at high redshift
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How do the seeds grow!
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How do MBHs grow!?

MBH-MBH mergers vs gas accretion
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Total mass density in MBHs is
constant in time: just reshuffle the
mass function

Total mass density in MBHs grows with
time



How do MBHs grow!

Soltan’s argument: integral over the LF of quasars

L = eM;,c2 A fraction € of mass goes into radiation



Soltan’s argument

Luminosity function of quasars/
AGN
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Soltan’s argument

Mergers: total mass
density in MBHs is
constant in time

Accretion: total mass
density in MBHs grows
with time

mass density increases by > one order of
magnitude in the last ~10 Gyr: accretion leads
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What triggers AGN activity
and MBH growth!?

Galaxy mergers
Cold flows
Secular instabilities
Clumpy discs



Galaxy mergers

* Dynamical torques trigger strong inflows
of low angular momentum gas that cause
high levels of activity: “quasars”
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(c) Interaction/"Merger”
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NGC

- now within one halo, galaxies interact &
lose angular momentum

- SFR starts to increase

- stellar winds dominate feedback

- rarely excite QSOs (only special orbits)

(b) “Small Group”

M66 Group

- halo accretes similar-mass
companion(s)

- can occur over a wide mass range

= Msao still similar to before:
dynamical friction merges
the subhalos efficiently

(a) Isolated Disk

ME|

- halo & disk grow, most stars formed

- secular growth builds bars & pseudobulges

- “Seyfert” fueling (AGN with Me>-23)
cannot redden to the red sequence

SFR [My yr'']

(f) Quasar

(d) Coalescence/(U)LIRG (e) “Blowout”

NGC 6240

IRAS Quasar Hosts

- galaxies coalesce: violent relaxation in core
- gas inflows to center
starburst & buried (X-ray) AGN
- starburst dominates luminosity/feedback,
but, total stellar mass formed is smal

- BH grows rapidly: briefly
dominates luminosity/feedback
- remaining dust/gas expelled
- get reddened (but not Type Il) QSO
recent/ongoing SF in host
high Eddington ratios
merger sggnatures sull visble

- dust removed: now a “tradiiomal” QSO

- host morphology difficult to observe
udal features fade rapidly

- characteristically blue/young spheroid

(g) Decay/K+A
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- star formation terminated

- large BH/spheroid - efficient feedback

- halo grows to “large group  scales:
mergers become inefficient

- growth by “dry” mergers

Hopkins et al. (2006+)
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Major mergers

100 |:2 Coplanar Prograde Spiral-Spiral Merger
| I I | | | | I I | | I

* Tidal forces trigger
gas inflows and
angular momentum = 0.1 §
loss in both galaxies

(kpc)

* Star formation
rates and AGN
activity peak
following
pericenter passages

SFR (M/yr) L, (erg/s)




Minor mergers

* Ram pressure depletes the small galaxy of
gas, and it is eventually disrupted in |:6 and

|:10 mergers

* The large galaxy does not even notice it’s
In 2 merger

* Very low AGN activity



Galaxy Mergers: AGN activity
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Is AGN activity triggered by galaxy

mergers!
Probably not much (at z<I)

AGN host galaxies

The observed HST
morphologies of
“intermediate-
luminosity” type-|
AGN hosts are
indistinguishable from
those of a “inactive”
galaxies sample



Is AGN activity triggered by galaxy mergers!?

Probably some of it (at z<I)
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FiGc. 4. Observed AGN fraction of galaxies in close kinematic
pairs (dr < 75 kpc and dv < 500 km s~ '; filled black circles) as
compared to galaxies with no neighbor within a projected separa-
tion of 143 kpc and a velocity offset less than 500 km s~ * (open
circles) for two redshift intervals. The horizontal bars indicate the
redshift range for each value while the vertical bars are the lo
error.

Silverman et al. (201 1)



Is AGN activity triggered by
galaxy mergers!

* Not all (or most of) AGN activity is
merger driven = AGN activity is not

merger driven (in general)

* A merger or interaction enhances AGN
activity = Mergers drive some AGN

activity



Bellovary, MV et al.
2011




Cold flows or
Hot flows!?
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Secular Instabilities

* Seems to be common in Seyfert galaxies: nearby
AGN hosted in quiescent spiral galaxies where
kinematics can be studied well

* There is at best only a marginal relation between
Seyferts and bars (eg. Shiosman+ 00, Hao+ 09)

* Bars seem however to be linked to Narrow Line
Seyfert |s: strong bars, circumnuclear spirals



Smooth discs vs clumpy discs
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Sa Sa Sc Sc
Weinzirl+ 09

SINFONI+LGS-AO . NICMOS/NIC2
v(Ha) [km/s] *

%

-150

. SINFONI NICMOS/NIC2
v(Ha) [km/s] H,g0

Forster Schreiber+ 06,09, 10

Courtesy of R. Davies
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Clumpy high-z discs

L M16150

6 Simulations

e Gas+starst+dark matter with Ramses AMR code
* 6 pc max. resolution

* Thermal supernova feedback
* Black hole: Bondi accretion + thermal AGN feedback



Black hole accretion rates
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High-redshift quasars

Very bright quasars in the SDSS with z>6 (willott et al, 2003; Fan et al., 2006; Jiang
et al., 2009)

Detection of a 2x10° M, BH at z=7 and a 10'° M__ BH at z=6.3

(Mortlock et al., 201 1,Wu et al. 2015)
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Merger-driven accretion (Li et al. 2007)
series of successive mergers using tree
extracted from cosmological run

Direct accretion from the cosmic cold flows
(Di Matteo et al.,2012)

Cosmological context with large statistics
but low resolution (~Ikpc)

Violent disc instabilities (Bournaud et al.,2011)
High resolution (Ipc) but isolated disc

Li et al. 2007
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Cosmological zooms
10 pc resolution

Dubois+2012

Courtesy of Y. Dubois




talcc/tcirc (01 rvir_> rb)

Trace back the gas particles that belong to the galactic bulge:
what’s their history!?

Gas infalling at late times
does more rotations before

being accreted — it belongs
to the disc

Courtesy of Y. Dubois Dubois+2012, see also Bellovary+201 3, Feng+2014



facc

Trace back the gas particles that belong to the galactic bulge:
what’s their history!?

Gas infalling at late times
does more rotations before
being accreted — it belongs
to the disc

Direct accretion of cosmic
gas dominates early, disc
feeding takes over at later
times

Mergers become important
even later on

Courtesy of Y. Dubois Dubois+2012, see also Bellovary+201 3, Feng+2014



A rapid clump migration to trigger an AGN bursts
SFR o
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Dubois, Pichon et al., 2013



First phase: direct accretion from cosmic flows

Second phase: migration of clumps in the disc

Third phase: merger-driven accretion




