High-redshift massive black holes and AGN

Marta Volonteri

Institut d'Astrophysique de Paris

How do black holes grow to become super-massive?

Feeding BHs at high redshift

High-redshift MBHs

The billion solar mass MBHs powering the observed z>6 quasars are the tip of the iceberg

Very biased, dense regions

What do we expect for *normal* MBHs in *normal* galaxies?

How do galaxies feed normal MBHs?

Ramses 10 Mpc Cosmological Volume, ~10pc resolution

How do galaxies feed normal MBHs?

Low-mass BHs in low-mass galaxies: fragile environment

Interplay between SN feedback and MBH accretion: SN feedback is sufficient to energize the gas and suppress accretion (Dubois+14)

SETH, Ramses Cosmological Zoom, ~10 pc resolution, Dubois+14

How do galaxies feed normal MBHs?

MBH vs M_{*} mass function at z=6 vs z=0 Is BH-host galaxy co-evolution broken at high-z/for low mass galaxies?

How is the observed AGN vs. galaxy coevolution shaped?

M_{BH}- host relations: when are they established?

M_{BH}- host relations: redshift evolution

- At high redshift the detection of the host galaxies is very difficult especially in luminous quasars: the AGN light swamps the galaxy light
- At high redshift the estimate of the MBH mass is also more difficult as one has to rely on "virial masses" through different line widths in different redshift windows – not all lines equally good at tracing BH mass

M_{BH}- host relations: redshift evolution

- At high redshift the detection of the host galaxies is very difficult especially in luminous quasars: the AGN light swamps the galaxy light
- Also need to convert luminosity into mass stellar population models
- Is it really bulge mass, or total stellar mass?
- At high redshift the estimate of the MBH mass is also more difficult as one has to rely on "virial masses" through different line widths in different redshift windows – not all lines equally good at tracing BH mass

M_{BH}- bulge relation: redshift evolution

- MBH- bulge luminosity: seems redshift independent (Peng et al 2006 lensed galaxies; Decarli et al 2010; McLure et al. 2006. Note: hosts are classified as ellipticals in these samples.)
- Once bulge luminosity is converted in bulge mass assuming passive stellar evolution: MBHs are "overmassive" at fixed galaxy mass
- $R=[M_{BH}(z)/Mbulge(z)]/[M_{BH}(z)/Mbulge(z)]\sim 2$ at z<2
- R=~3-6 at z~2
- R=~7 at z~3

M_{BH}- stellar mass relation: redshift evolution

- There is no real effect using the same tech sample of galaxies v
- Measure stellar mas fitting (Merloni et al.): tl
- Cisternas: R=0 at z[,] by z=0)
- Merloni: R ~(I+z)^{0.6}

M_{BH}- host relations: highest redshift

 Host galaxy cannot be imaged – use radio maps of CO that traces cold gas => gas masses and dynamical masses from line widths and beam size, plus "velocity dispersion" also from line width. Careful in comparing apples to apples!

M_{BH}- host relations: highest redshift

- Host galaxy cannot be imaged use radio maps of CO that traces cold gas => gas masses and dynamical masses from line widths and beam size, plus "velocity dispersion" also from line width. Careful in comparing apples to apples!
- M_{BH} much overmassive at fixed σ

Current large-shallow surveys select only the most luminous quasars => the most massive holes at the highest redshiftt

M_{BH}- host relations: summary

Courtesy of A. Marconi

MBH vs M_{*} mass function at z=6 vs z=0 M_{*} axis shifted by 4x10⁻³ from MBH

MBH vs galaxy at z=6 vs z=0

- Deficit @ low masses => $M_{BH}/M_{*|z=6} << M_{BH}/M_{*|z=0}$
- Excess @ high masses => $M_{BH}/M_{*|z=6}$ >> $M_{BH}/M_{*|z=0}$

Are the BH-galaxy relations "tilted" at high-z?

MBH vs galaxy at z=0 vs z=6

- stellar velocity dispersion
- dynamical BH mass

- gas dispersion
- "virial" BH mass

MBH vs galaxy at z=0 vs z=6

- galaxy stellar mass
- dynamical/virial BH mass

- gas "dynamical mass"
- "virial" BH mass

MBH vs galaxy at z=0 vs z=6

- galaxy stellar mass
- dynamical BH mass

- bulge/disc decomposition?
- do bulges exist?

The role of feedback at high redshift

Horizon-noAGN

Horizon-AGN

<u>Horizon-AGN (Dubois+14)</u>: L_{box}=140 Mpc, 7x10⁹ gas cells, dx~1 kpc, AMR (Ramses) Green: gas density / Red: temperature / Blue: metallicity

AGN feedback

Feedback: the positive or negative effect of AGN radiation and kinetic energy on the galaxy

Different types of feedback at play:

- How feedback affects the galaxy

- How feedback affects the MBH

AGN feedback

"If the velocity dispersion of the galaxy is σ then the binding energy of the galaxy bulge, which is of mass Mgal, is Egal \approx Mgal σ^2

The mass of the MBH is $\sim M_{BH} \sim 10^{-3}$ Mgal. Assuming a radiative efficiency of 10%, then the energy released by the growth of the black hole is given by $E_{BH} = 0.1 M_{BH}c^2$

Therefore $E_{BH}/E_{gal} \sim 10^{-4} (c/\sigma)^2$. Most galaxies have $\sigma < 400$ kms-1, so $E_{BH}/E_{gal} > 80$.

The energy produced by the growth of the black hole therefore exceeds the binding energy by a large factor

If even a small fraction of the energy can be transferred to the gas, then an AGN can have a profound effect on the evolution of its host galaxy"

AGN energy output: feedback flavors

•Radiative:

- •Winds/outflows from accretion discs [QSOs/Seyfert] •BAL QSOs
 - •UV absorbers
 - •Warm absorbers
 - •UFO (X-ray Ultra-Fast Outflows)

•Kinetic

- •Powerful radio galaxies [RLQ, FRII]
- •Low –luminoisty jetted-dominated sources

AGN feedback at work

"Chandra image shows concentric ripples interpreted as sound waves generated by the expansion of the central pressure peaks associated with the repetitive blowing of bubbles"

Feedback in galaxies: radiation not jets

If accretion rate close to Eddington radiation pressure ~ balances gravity => either stops gas from infalling, or energizes it or even unbinds it from galaxy

Equilibrium between infall and outflow established when either energy or momentum balance

Feedback in galaxies: radiation not jets

Energy balance:

- The galaxy is assumed to be isothermal with radius r, so that its mass is Mgal = $2\sigma^2 r/G$.
- The maximum gas collapse rate ~2 fo $^{3}/G$, is equivalent to the gas content, fMgal, collapsing on a freefall time, r/ σ => A power of ~f σ^{5}/G needed for balance
- Equate this power to $L_{Edd} = 4\pi G M_{BH} m_p c / \sigma_T$
- Obtain maximum mass of MBH before gas swept away:

$$M_{
m BH} \sim rac{f\sigma^5\sigma_{
m T}}{4\pi G^2 m_{
m p}c},$$

Feedback in galaxies: radiation not jets

Momentum balance:

• Balance the outward radiation force with the inward one due to gravity

$$\frac{4\pi GM_{\rm BH}m_{\rm p}}{\sigma_{\rm T}} = \frac{L_{\rm Edd}}{c} = \frac{GM_{\rm gal}M_{\rm gas}}{r^2} = \frac{fGM_{\rm gal}^2}{r^2} = \frac{fG}{r^2} \left(\frac{2\sigma^2 r}{G}\right)^2$$
• Obtain maximum mass of MBH before gas swept away
$$\frac{4\pi GM_{\rm BH}m_{\rm p}}{\sigma_{\rm T}} = \frac{f4\sigma^4}{G},$$

An example from simulations

FIG. 3.— Simulation snapshot during an accretion event. A significant quantity of hot, outflowing gas injects energy and momentum into the interstellar medium at $r \simeq 1$ kpc.

Novak et al 2012

An example from simulations

FIG. 4.— Simulation snapshot showing the final stages of a major accretion event. A hot, expanding bubble of gas extends to 100 pc, shutting down further SMBH accretion. Dense, overlying gas has caused the initially bipolar BAL wind to become quasi-spherical. The hot bubble is breaking through the overlying gas in at the north pole, which will lead to a unipolar wind.

Novak et al 2012

Complex interaction between feeding, feedback, star formation

Courtesy of A. Negri

Another example from simulations

Kinetic energy with bipolar outflow Mass ejected with velocity 10 000 km/s (not really relativistic jet)

=> kinetic feedback

Modification of the internal energy

=> increase the gas temperature

=> decreases star formation

AGN feedback does not destroy galaxies

Winds find the easiest path through low-density gas – avoid dense parts of the galaxy disc, leaving it unscathed (Gabor & Bournaud 2014, Roos+15)

AGN feedback does not "blast away" galaxies, but prevents gas inflows (Dubois+2013, Costa+14, Tremmel+ in prep)

Active MBH creates large scale, polar outflow

Cold CGM eventually destroyed, leaving a hot halo

Cold filaments are strongly perturbed due to AGN energy injection

The growth of the MBH slows down as the galaxy does not receive fresh

How do MBHs affect MBHs ?

~10-20% of Eddington rate AGN feedback from seed MBHs may stunt their early growth (Alvarez+2009;Aykutalp+14)

High-redshift quasars

Very bright quasars in the SDSS with z>6 (Willott et al., 2003; Fan et al., 2006; Jiang et al., 2009)

Detection of a 2×10^9 M_{sun} BH at z=7 and a 10^{10} M_{sun} BH at z=6.3 (Mortlock et al., 2011, Wu et al. 2015)

Requirement:

- Need to grow at the Eddington limit for the whole time ($M_0 \sim 300$ M_{sun}) or 60% of the time ($M_0 \sim 10^5 M_{sun}$)

~100 Msun MBH seed

Milosavljevic et al 07

~100 Msun MBH in a ~10⁵ Msun halo

Alvarez et al. 2009

~10⁴ Msun MBH in a ~10⁷ Msun halo

Johnson et al. 2011

~10⁴ Msun MBH in a ~10⁷ Msun halo

Projected number density (left), density-weighted temperature (middle) density-weighted H II fraction (right)

Johnson et al. 2011

~10⁵ Msun MBH in a ~10¹⁰ Msun halo

~10 pc resolution

Dubois et al. 2013

How do MBHs affect MBHs ?

I am still confused, but:

- MBHs seem to grow only once the halo/galaxy is sufficiently massive
- Before that AGN (and SN) feedback thwart the growth of the MBH

Summary

- I. High-z quasars and MBHs
 - currently limited to the brightest quasars, most massive BHs
 - need to find lower luminosity/mass MBHs to understand formation and early growth
 - JWST/ATHENA/SKA will help!
- 2. How do MBHs form?
 - Still unclear
 - Seed masses between 100-10⁵ Msun

Summary

3. The high-z largest MBHs grow by (from high- to low- redshift):

- Cold flows
- Clumpy discs
- Galaxy mergers
- Secular instabilities
- 4. High-z MBHs and galaxies
 - MBH-galaxy relationships: change?
 - Bulge/galaxy mass, gas/stellar velocity dispersion?
 - Need to compare apples to apples

Summary

5.AGN feedback

- How do energy/momentum/radiation from the MBH couple to the gas?
- How does AGN feeding/feedback work on sub-parsec scales?